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Abstract—This paper presents improved evolutionary operation based on D-optimal design and response surface
method. D-optimal design and response surface method allow us to overcome the disadvantages of conventional
evolutionary operation. Although evolutionary operation has been an effective alternative when fundamental models
are hard to build because of the lack of the necessary information, the disadvantages in the number of experiments,
experimental design and analysis and detection of the optimal point have prevented EVOP from being frequently ap-
plied to real processes. To compare the performance of the proposed method and the conventional EVOP, both of themn
were applied to a pulp digester process. As a result, the comparable response variable value has been dearly obtained
with the proposed method while conducting much fewer numbers of experiments than the conventional evolutionary
operation. In addition, the proposed method flexibly handles the constraints in the experimental design and gives more
reliable experiment results than the conventional evolutionary operation. By virtue of these benefits, the proposed meth-
od can be utilized effectively for a process where prior knowledge for the process is not available.
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INTRODUCTION

Tt has been indispensable for industry to cut down operating costs
and to enhance the quality of products to survive in extreme com-
petiion. To achieve these goals, we should find the optimal operat-
ing conditions at which to operate a plant. Although industrial op-
erators have improved operating conditions based on their previ-
ous experiences, their operating methods might be neither system-
atic nor economical. Thus, it usually takes a great deal of time to
reach the optimal operating condition and it may not be the glo-
bal optimum, even if they have found out an improved point. To
solve this problem, various optimization methods based on mathe-
matical programming have been proposed [Lee and Lim, 1999, Choi
et al., 2000, Janson, 2001; Choi and Manousiouthakis, 2002]. The
methods necessarily include first principle models for a process as
equality constraints in an optimization. Therefore, only if the mod-
els can describe the given system to an acceptable degree we can
use these methods to effectively locate the optimum pomt. On the
other hand, the necessity for the accurate first principle models re-
stricts usefulness of the methods because it is very difficult and time-
consuming to buld the first prineiple models for an unknown pro-
cess whose static and dynamic behaviors cannot be exactly mod-
eled. For thus reason, the mathematical programmimg based meth-
ods have been usually applied to relatively simple and well-known
processes such as utility plants [Lee et al, 1998a, b; Yi and Han,
2001].

Evolutionary operation (EVOP) proposed by Box [1957] can be
applied for this case since it allows us to find the optimal operating
condition without using the first pnnciple models. There have been
many cases where EVOP was applied for the optimization of chem-
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ical processes [Hunter and Kittrell, 1966]. Although the application
cases of EVOP have rapidly decreased since the 1970s because of
advances in modeling techniques, EVOP has many useful proper-
ties as an optimization method. Tn particular, it is advantageous to
the optimization of complex processes since EVOP does not require
accurate first principle models for a process.

This is proved by the fact that EVOP is again being used for the
optimization of bioprocesses for wiich the wmer phenomena are
not clearly understood Banerjee and Bhattacharyya [1993] applied
EVOP to a bioprocess, where mformation on the process was m-
sufficient, to maximize enzyme activity using three inducers. Tunga
et al. [1999] also used EVOP to maximize the production of pro-
tease by optimizing the concentrations of vitamin, metal 1on and
plant hormone. Saad [1994] showed that EVOP could be used for
the optimization of the porcelain enamel manufacturing process.
All of them mentioned that EVOP could be applied to unknown
processes as a superb optimization technique. However, several dis-
advantages of EVOP, such as a large mumber of experiments, am-
biguousness of the analysis result on the direction of process im-
provement, and excessive reduction of experiment region in the pres-
ence of constramts, should be overcome for its more frequent ap-
plications to real problems.

Comsequently, m this paper, we propose an improved EVOP that
overcomes the limitations of a conventional EVOP. Tn the pro-
posed method, D-optimal design and response surface method (RSM)
are used to solve the problems. D-optinal design, which 1 known
as one of the most efficient experimental design methods, has been
greatly developed by Mitchell [1974], Johnson and Nachtsheim
[1983], and DuMouchel and Jones [1994]. Mitchell [1974] pro-
posed DETMAX algorithm which is known as the origin of the mo-
dern D-optimal design algorithm. Jolmson and Nachtshein [1983]
suggested some guidelines to construct exact D-optimal designs
on convex design spaces. They recommended Galil and Kiefer’s
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method [Galil and Kieter, 1980] and Powells method [Powell, 1964]
to determme a good starting design and to efficiently find a D-optimal
experiment subset from the viewpoint of optimization, respectively.
D-optimal design was further advanced by DuMouchel and Jones
[1994]. They modified the algonthm of D-optunal design by com-
bining Bayesian paradigm with the notion of primary and potential
terms to make it more resistant to the biases caused by an mcorrect
maodel. Response surface method (RSM) for building an empirical
madel using experiment data was first addressed by Box and Wil-
son [1951], and then has been utihized m marny fields meludmg chem-
ical engineering, bicengineering, pulp and paper industry, and phar-
maceutical industry since it is a well-established method for inves-
tigating the causal relationship between inputs and outputs for a sys-
tem [Park et al, 1996].

In this study, first, we explam how the problems of the conven-
tional EVOP are solved by D-optimal design and response surface
method. Then, we compare the performance of the proposed meth-
od with that of the conventional EVOP by applying both methods
to the pulp digester benchmark model [Kayihan, 1997].

THEORETICAL BACKGROUND

1.EVOP and Tts Improvement Based on D-optimal Design
and RSM

EVOP is a method for process improvement proposed by Box
m 1957 [Box, 1957]. The basic plulosophy of EVOP 1 that indus-
trial processes should be run so as to generate not only products but
also the mformation on how the product can be improved. By ap-
plying EVOP to a process, operators explore an unexperienced oper-
ating region on the basis of results of 2* factorial design of experi-
ments. And ther, they move an operating condition to a better point
by statistically investigating the effects of nput factors. EVOP i3
implemented in an actual process itself as an operation mode. That
is, it is virtually a permanent method of nunning a plant. Therefore,
it does not require special facilities and concessions.

Basically, a conventional EVOP can be carried out by following
several steps as shown in Fig. 1. Of the steps, the 2" factorial design
[Box and Draper, 1987] as an experimental design method and statis-

| Identification of response variables and input factors |

""| Specification of ranges for the input factors I
| 27 faciorial design 1o determine the experiment positions and order |

¥
I Experiments and acquisition of the response variable values |

Investigation for the significance of the input faciors
with statistical test

[}
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Fig. 1. Flow chart representing the procedure of the conventional
EVOPF.
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Fig. 2. Flow chart representing the procedure of the improved
EVOP. In the figure, ML.R and PLS represent Multiple Lin-
ear Regression and Partial Least Squares, respectively [Gel-
adi and Kowalski, 1986].

tical test procedure diniush the usefulness of EVOP and prevent
it from being frequently applied to real plants as an optimization
method in spite of its many advantages. First, the 27 factorial design
used m the conventional EVOP requires too large a mumber of ex-
periments to be applied to a real problem. Tn addition, it exces-
sively cuts off the ariginal experiment region to make the imegular ex-
permment region symmetric when there are expermmental constramts.
Finally, the statistical test procedure of a conventional EVOP such
as analysis of vanance (ANOVA) [Neter et al., 1996] 18 cumber-
some and its result may be ambiguous when a large mumber of in-
put factors are inchided in the procedure. For example, we cannot
clearly determme where to move the operating condition for the
case that the main effects are not significant but the interaction ef-
fects are significant or that only one experiment is conducted for
each experiment position due to the limitation in the number of ex-
periments [Neter et al., 1996].

Therefore, we adopted D-optimal design end RSM m the pro-
posed method instead of the 27 factorial design and statistical test
procedure to solve these problems of the conventional EVOP. The
procedure of the improved EVOP based on these methods 15 shown
in Fig. 2. Tn the figure, the distinctive parts of the improved EVOP
are denoted 1n italic letters. The advantages of the improved EVOP
are as follows. First, the number of experiments greatly decreases
especially when marty input factors are used in the experiments.
Second, the experiment region 1s taken as broadly as possible, not
cutting off the original experiment region when the experiment re-
gion is irregular due to various experimental constraints. Third, the
analysis results on the direction of process improvement are more
reliable since we can malke sure that the results of experiments are
correct by the repetitive expeniments m D-optimal design. Fmally,
the best operating condition for an experiment region can be deter-
mined more clearly by applying an appropriate optimization algo-
rithm to the model built by RSM. These advantages will be explamed
in detail along with the properties of D-optimal design and RSM.
2. D-optimal Design as an Experimental Desigcn Method

Expenimental design or design of expermments (DOE) [Box end
Draper, 1987] is a theory on how to arrange the experiment posi-
tions to extract mportant mformation from the results of experiments
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while minimizing the number of experiments. For a process for which
first principle models are not available, DOE can be used effec-
tively to understand the input-output structure of the process. Once
we know the cansality of the process, we can optimally tne the
input tactors to improve the performance of the process. In the pro-
posed method shown in Fig, 2, D-optimal design is used as a DOE
method instead of the 2" factorial design used in the conventional
EVOP In D-optimal design, a simple polynomial model represent-
ing the relationship between input factors and a response variable
is built from the results of experiments to investigate the effects of
input factors on aresponse varigble. This model is then used to max-
imize the performance of aprocess as well as to predict a response
variable value at a specific position.

The algorithm of D-optimal design is as follows [Mitchell, 1974;
DuMouchel and Jones, 1994].

Step 1. Determine the proper form of the model and the number
of experim ents.

Step 2 Make a candidate set comprised of extreme vertices, cen-
ters of the edges, centers of faces and overall centroid of the con-
strained region [Piepel, 1988].

Step 3. Randomly select the initial experiment set from the can-
didate set so that the number of experiments in the selected subset
is equal to the predetermined number of experiments.

Step 4. Interchange each experiment position in the set with a
new one in the candidate set until determinant of X'X is maxi-
mized, where X is the design mairix containing the mformation on
the arrangement of input factors within specified ranges.

When selecting experiment positions, D-optimal design employs
the criterion of maximizing det(X"X), as described in the algorithm
of D-optimal design. The following equation shows the variance-
covariance mairix for the parameter vector b used in the model

[Neter et al., 1996]:

var{b}=c{(X7X)™! 1)

From the above equation, we can see that if we maximize X"X, the
vaniances of the parameters are mmimized and thus an accurate mod-
el can be obtained. However, X"X cannot be maximized since it is
a matrix. Therefore, X'X should be made to a scalar which repre-
sents the magnitude of X'X and the determinant is used for this pur-
pose in D-optimal design. Tha is, D-optimal design can be said to
make the parameter variances as small as possible by arranging the
experiment positions as broadly as possible according to the crite-
rion, the maxmization of det(X"X).

D-optimal design has several advantages over the factorial designs.
Theoretically, we can reduce the number of experiments to the num-
ber of parameters used n the model with D-optimal design. This
property of D-optimal design is effectively utilized when a large
number of input factors are mncluded in the step of experimental
design. Table 1 shows the relationship between the number of in-
put factors and the minimum number of experiments for three well-
known DOE methods: 2" factorial design, 3" factorial design, and
D-optimal design [Box and Dreaper, 1987, Neter et al., 1996]. Note
that the D-optimal design requires the smallest number of experi-
ments among the methods, with increasing the number of input fac-
tors.

Fig. 3 shows the difference between the factorial designs and the
D-optimal design regarding the experiment region. In the figure,

Table 1. The number of experiments required for the three DOE
methods. As the number of input factors increases, the
numbers of experiments for the two factorial designs

rapidly increase
Nutmber of 2 3 4 5 6
input factors
Number of experiments
2" factorial design 4 8 16 32 64
3" factorial design 9 27 81 243 729
D-optimal design 6 10 15 21 28

gupmtrplo crnseramt

LTI factar 2
laput fecar

Iepud tacier | mpe Eacier |
Factorial Design D-sptimal Design
Fig. 3. Experiment regions of the factorial design and D-optimal
design, Gray-colored regions mean original experiment re-
gions.

the use of D-optimal design does not cut off the original experi-
ment region when the region becomes irregular due to a constraint.
This property results in the derivation of the correct causal relation-
ship between input factors and aresponse variable.

Generally, since experiments can be repetitively conducted at a
specific position in D-optimal design, it is an additional advantage
that the analysis results on the direction of process improvement
are more relisble than those of the factorial designs. For factorial
design, usually only one experniment is conducted for each experi-
ment position, otherwise the mumber of experiments increases sig-
nificantly due to the symm etric property of the factonal designs. For
instance, if we use 2" factorial design, the number of experiments
increases to 1024 for only 10 mput factors even though only one
experiment is conducted for each experiment position. On the other
hand, since experiments can be repetitively conducted at a specific
position in D-optimal design, we can confim that all results for the
repetitive experiments produce the same response values. There-
fore, we can be convinced that the results of the experiments are
correct if all results for the repetitive experiments are equal to each
other, and otherwise we should carry out experiments agam. This
fact means that the results for the experiments and analy ses obtamed
by D-optimal design are more reliable than by the factorial designs.
3. Response Surface Method

Response surface method iz a method for building a response
surface mode] which approximates the acdual behavior of a response
variable in a given experiment region by fitting response variable
values obtained from designed experiments [Box and Draper, 1987].
In a conventional EVOP, the direction of process improvement is
determined by analyzing the results of datistical tests with which
the effects of input factors on a response variable are investigated.

Korean .J. Chem. Eng.(Vdl. 19, No. 4)
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Unfortunately, it happens frequently that we cannot obviously deter-
mune where to move the operatmg condition with the analysis re-
sults since the results are not typically clear, especially when there
are a large number of input factors or when mean squared error
(MSE) 18 small due to the small mumber of expenments. However,
if we apply the adequate optimization algorithm to the response sur-
face model bunlt by RSM, the best operating condition within a given
experiment region can be clearly determined.

The following response surface model described by a set of the
second order polynomial equations s frequently used since 1t 15 the
simplest form of nonlinear models:

¥=X'b 2)

where,

2 2 2
LRy Xypoee Xy Xy Xig o X XX X% - K1 Xy

2 2 2
X = L %) Ry o B By K o Xy XX XXz -0 Koo Xan 3)
>

Ko Xt Xz - -

1%, X5 Ko Kot Koz Kot Ko -+ K1 Ko
b=[ buu bm bzu bn[l b11 b22 bnn b12b13"'bn*1n ]T’ (4)
y=[y1y2___ym]T (5

However, since the simplicity deteriorates the prediction capability
of the model in a broad region, it is required to adjust the experi-
ment region properly. If the region 15 too small, too many experi-
ments should be conducted to extract the necessary information for
the entire experiment region. By contrast, if the region 1s too large,
the regponse surface model built in the region has poor prediction
performance. Therefore, it is important to determine the optimal
size of the experiment region, wiich guarantees both the mimmi-
zation of the number of experiments and the satisfactory prediction
capability of the response surface model, by using prior knowledge
for a process or sensitivity analysis and so forth.

The performance of the response surface model is generally evalu-
ated by calculating R? and ( as follows, respectively:

s SSE
R =1 ST (6)
. . PRESS
Q=l"=g1 (7
where,
SSE(Error Sum of Squares)=i(y,. 9.7, (®)
i=1
SST(Total Sum of Squares)=i(y! -7, )]
i=1
PRESS(PREdiction Sum of Squares) :i(yj —)“fj.)2 (10)
j=1

R? represents the degree to which the variation of a response var-
iable is explaimed by the response surface model and () the degree
to which the vanation of a response variable 1s predicted by the re-
sponse surface model. With R” approaching one, the variation of a
response variable explamed by the response surface model mereases.
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And with ¢ approaching one, the prediction performance of the
response surface model increases.

CASE STUDY

1. Process Description

To test the proposed method, the pulp digester benchmark model
[Kayihan, 1997] was used which simulates the dynamics of a real
pulp digester process. The process aims at removing the lignin from
wood chips by causing reaction on the wiite liquor, the mam constit-
uents of which are sodium hydroxide and hydrosulfide. The entire
process is composed of four sub-processes: the impregnation ves-
sel, the coole zone, the modified continuous cooking (MCC) zone,
and the extended modified continuous cooking (EMCC) zone. In
Fig. 4, the mamipulated variables of the process are the temperature
of the mixture into the cook zone (T, the temperature of the trim
white liqure into MCC zone (T, .., the temperature of the trim white
liquor mto EMCC zone (Tyyr). the flowrate of the reacted white
liquor extracted from the cook zone (Fzgy), the flowrate of the trim
white liquor mto MCC zone (F, ), and the flowrate of the trum
white licuor into EMCC zone (Fgo). These six variables are used
as input factors for the experiments. The Kappa number defined
by the followmng expression represents the ligmn content in wood
chips and is the response variable that should be minimized in the
process:

_ the lignin mass
Kappa number 654the total solid mass an

Simee both the conventional EVOP and the improved EVOP are
the methods which are directly applied to a real process itself, all
the experiments in this study are regarded as actual experiments
although they are simulations. On the assumption that the first prin-
ciple models cannot be built for the process, we apply both the con-

white liguor

wet chips —— ' ]'
Cook
- X P>
Instant
St

mixing

I P

MCC
zone
é’ TMOC

I— FMCC

EMCC
Tone
é' Temce

FEMCC

FDLL

Impregnation
vessel (IV)

Kappa #

Fig. 4. Process diagram of the pulp digester benchmark model.
MCC and EMCC stand for modified continuous cooking
and extended modified continuous cooking, respectively.
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Table 2. ANOVA table for the first phase (MSE'=0.0214)
Term Degree of freedom’ Sum of squares’ Mean square’ F statistics’ P-value’
T eoor 1 4073722 407.3722 19048.5475 0.0001
Thice 1 402.1474 402.1474 18804.2388 0.0001
T g 1 389.3918 389.3918 18207.7928 0.0001
S 1 668.9536 668.9536 31279.9839 0.0001
Fice 1 618.5026 618.5026 289209164 0.0001
Face 1 1089.6477 1089.6477 50951.4602 0.0001
T Tosce 1 2.1118 2.1118 08.7482 0.0001
T oo L masce 1 1.6958 1.6958 79.2929 0.0001
J P . 1 1.5778 1.5778 73.7781 0.0001
TaooiFruce 1 3.1690 3.1690 148.1801 0.0001
T oo snce 1 4.4849 4.4849 209.7128 0.0001
TrceTace 1 47361 4.7361 221.4590 0.0001
ThsceFuper 1 0.7070 0.7070 33.0594 0.0001
TriceFace 1 1.2893 1.2893 60.2886 0.0001
TceFasee 1 0.0245 0.0245 1.1447 0.2908
S 1 1.0912 1.0912 51.0223 0.0001
TspsccF sice 1 0.6884 0.6884 32.1904 0.0001
TorocF saroe 1 3.0772 3.0772 143.8873 0.0001
1 9.2102 9.2102 430.6668 0.0001
FireFascc 1 11.0104 11.0104 514.8401 0.0001
FoocFaee 1 13.7160 13.7160 641.3545 0.0001
Error 42 0.8982 0.0214
Total 63 3635.5031

'MSE=88E/(Degree of freedom for error)

’Degree of freedom (for each term)=number of levels for the corresponding term—1=2—1=1. Degree of freedom for error and total data

i8 defined as “m—1—number of terms used” and “m—17.

“Sum of Squares=total sum of (mean for the corresponding term— overall mean)’

“Mean Square=Sum of Squares/(Degree of freedom)
°F statistics=Mean Square/MSE

’P-value=right portion of the F statistics in the corresponding F-distribution, that is, the probability that the term is not significant com-

pared with error

ventional EVOP end the improved EVOP to the process to find the
optimal set of the input factors at which Kappa number is mini-
mized. Note that we assume that noises and disturbances, winch
may occur in the real process, are filtered out to observe the effects
of the mput factors apparently since there are no noises and distur-
bances m the simulated values.
2. Application of the Conventional EVOP

At fst, we applied the conventional EVOP to the pulp digester
benchmerk model According to the procedure shown in Fig. 1, we
designed experments with a 2” factonial design to determine the
experiment positions after specifymg the appropnate ranges of the
input factors. Since there are the six input factors, 2° (=64) experi-
ments were run for each phase. A phase mears one implementation
of the whole procedure shown m Fig. 1 or Fig. 2 and we com-
pleted three phases to find the optimal operating condition. Tf we
use a 3" factorial design instead of the 2* factorial design, the mum-
ber of experiments increases to 3° (=729). In addition, it should be
noticed that the better operating condition which may exist between
the upper and lower levels of the mput factors carmot be detected
with the 27 factorial design.

After 64 experiments were completed based on the results of the
27 factorial design, we statistically tested the significance of various
effects usmg ANOVA to find the direction of process mmprovement
(Table 2). Atthe first phase, all the terms except the T, oF s term
shown in Table 2 were sigmificant at 99% confidence level smce
their p-values (nght portion of the F statistics m the corresponding
F-distribution) were smaller than 0.01. The result means that if we
change the value of each mput factor from one level to the other
level, the Kappa mumber changes in a statistically significant men-
ner. The direction of chenge m the Kappa munber can be inferred
from the knowledge on the process. For example, the Kappa num-
ber is expected to decrease because of the increase in the reaction
rate if we mcrease T, Based on the knowledge and ANOVA re-
sults, we concluded that all of the man effect terms (T, Thee
Tevices Fopars Fames and Fgon) had negative and significant effects
on the Kappa number. Therefore, we set all the input factors at the
upper levels within their ranges to reduce the Kappa number. The
significance of the interaction effect terms (the terms except for the
main effect terms i Table 2) implies that the effect of each mput
factor is not additive and the process has nonlinearity in this region.

Korean J. Chem. Eng.(Vol. 19, No. 4)
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However, the mean square values for the interaction effect terms
are so small compared with those for the main effect terms that the
interaction effects may be ignored. Moreover, it should be noted
that we may draw an emroneous conclusion from the ANOWVA results
since the sigmificance of all the terms was denived from a small mean
squared error value caused by the small number of experiments.

Since the Kappa mumber was reduced from 29.7091 to 15.0705
when all of the input factors were set at the upper level in the first
phase, we entered the second phase of the conventional EVOP. At
the second and third phases, experimental constramts descnibed by
Eqgs. (12) and (13) were introduced to the experimental design step
on the assumption that experiments at specific points carmot be con-
ducted due to environmental or economical reasons:

0.00185T ¢, +F 12z <0.893

0.419F ot Firy - <0.0528

(12)
(13)

Eq. (12) means that if the temperature of the muxture mto the cook

zone i too high, we must reduce the flowrate of the reacted white
liquor extracted from the cook zone. This constramt reflects the en-
vironmental restriction that hot wastewater should not be discharged
nto nature in a lage amount. Eg. (13) takes into account the oper-
atng costs. That 15, 1f the reacted wite iquor 18 extracted sufficiently
from the cook zone, the flowrate of the trim white liquor into EMCC
zone should be reduced since most of the ligmn m the wood chips
is expected to be already removed at the cook zone. Tn addition to
these constraints, the upper limits to which the input factors can be
adjusted were specified m the third phase smce we carmot merease
the input factors infinitely. Considering these constraints, we deter-
mined the ranges of the input factors as shown in Table 3. As for
the second phase, since all of the terms were significant at 9% con-
fidence level, all the input factors were again set at the upper levels
within their ranges despite some ambiguity m the ANOVA results.
Because the Kappa number again decreased to 4.4173 at the oper-
ating condition found in the second phase, we again entered the third
phase. After performing the same procedure as the previous phases,

Table 3. The determined ranges of the input factors for the conventional EVOP

Input factors

Response variable

Towr (K Ty (K) Trpoe () Frpge(mYmin) - Fpeo (M¥min) - Frypo (m*/min) Kappa number

Nominal operating condition 425 420 415 0.09 0.01 0.01 29.7091

Upper limit 435 430 432 0.1 0.02 0.017

1% phase +3 +2 +5 +0.003 +0.002 +0.0017

2* phase £5 4 =10 +0.0031 +0.004 +0.0026

3 phase +5 +4 +43 +0.0096 +0.0046 +0.0009

Table 4. ANOVA table for the third phase (MSE=0.9208)

Term Degree of freedom Sum of squares Mean square F statistics P-value
Tor 1 10.5279 10.5279 11.4335 0.0016
Thsoe 1 303.1830 303.1830 329.2608 0.0001
Tessce 1 47.5748 47.5748 51.6669 0.0001
Fuper 1 4196.3383 4196.3383 4557.2802 0.0001
Frice 1 1834.0513 1834.0513 1991.8046 0.0001
Fasco 1 1742941 174.2941 189.2858 0.0001
T oo Thsce 1 6.7279 6.7279 7.3066 0.0099
T Tossce 1 13117 13117 1.4245 0.2394
T oo vrr 1 18.3160 18.3160 19.8915 0.0001
T oo Fasce 1 0.0018 0.0018 0.0019 0.9651
N 1 0.0739 0.0739 0.0802 0.7784
Tisoc T mace 1 17.2698 17.2698 18.7553 0.0001
TuccForsr 1 11.9633 11.9633 12.9923 0.0008
TisocFusce 1 41417 4.1417 4.4980 0.0399
TisceF musce 1 0.4351 0.4351 0.4726 0.4956
TesscoF aper 1 0.0316 0.0316 0.0343 0.8539
TesscoF e 1 0.6475 0.6475 0.7032 0.4065
TasccF mce 1 0.113% 0.1139 0.1237 0.7268
S 1 876.4486 876.4486 951.8351 0.0001
ForeF e 1 62.4882 62.4882 67.8631 0.0001
FaeoF msce 1 28.5015 28.5015 30.9530 0.0001
Error 42 38.673¢ 0.9208
Total 63 7633.1155
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Table 5. The determined ranges of the input factors for the improved EVOP

Input factors Response variable
Teows K)  Taree (K)  Tareee(K)  Fiper (mzfmin) | (II]3;" min)  Faee (m3,"111in) Kappa number
Nominal operating conclition = 425 420 415 0.09 0.0 0.01 29.7001
Upper limit 435 430 432 0.1 0.02 0.017
1% phase 3 +2 15 +0.003 +0.002 +0.0017
2™ phase 6 +4 10 +0.005 +0.004 +0.0034
3" phase 5.8 +4.1 +4.3 +0.013 +0.005 +0.0019

we obtained the ANOVA table shown in Table 4. In this table, the
eight interaction effect terms (T Tavee Tewbisers Tewk e Tice

Fiees ToecFasers TaworFueen Tawocliee @d TP azc) are not sig-
nificant at 99% confidence level as their p-values are larger than

0.01. Moreover, the mean square vahles for T, and Tg,- terms

Table 6. The experiment set selected by the D-optimal design and
exp eriment results

Exp. Towr Tawe Towe Firer Fasee Feree  Kappa

no. (K) (K) (K) (m*min) (m’/min) (m*/min) number
1 422 418 410 0.0875 0.008 0.0083 50.4072
2 428 418 420 0.0875 0.008 0.0083 39.2747
3 422 422 420 0.0875 0.008 0.0083 40.3719
4 428 418 410 0.0925 0.008 0.0083 35.3751
5 422 422 410 0.0925 0.008 0.0083 37.1424
6 422 418 420 0.0925 0.008 0.0083 37.2859
7 422 418 420 0.0875 0.012 0.0083 37.0905
8 422 422 410 0.0875 0.008 0.0117 34.7424
9 422 418 420 0.0875 0.008 0.0117 33.7384
10 422 418 410 0.0925 0.008 0.0117 34.2205
11 422 422 420 0.0925 0.008 0.0117 23.4967
12 428 422 420 0.0875 0.012 0.0117 19.5513
13 428 422 410 0.0925 0.012 0.0117 18.8359
14 422 418 410 0.0925 0.011 0.0083 37.9273
15 422 418 413 0.0925 0.012 0.0083 344112
16 422 422 420 0.0925 0.012 0.0094 23132
17 422 419 410 0.0875 0.012 0.0117 32.1861
18 428 418 410 0.0875 0.012 0.0106 31.9846
19 428 418 410 0.0892 0.008 0.0117 32.746
20 428 418 420 0.0925 0.009 0.0117 21.3095
21 428 422 410 0.0875 0.009 0.0083 36.3788
22 428 422 420 0.0925 0.008 0.0106 21.3935
23 428 422 420 0.0925 0.011 0.0083 22.8632
24 428 421 410 0.0875 0.008 0.0117 31.8598
25 428 419 420 0.0925 0.012 0.0083 23.9994
26 424 418 420 0.0925 0.012 0.0117 21.5992
27 424 422 410 0.0875 0.012 0.0083 34.0915
28 422 420 415 0.09 0.01 0.01 32511
29 425 420 410 0.09 0.01 0.01 32.0554
30 425 420 415 0.0875 0.01 0.01 33.1293
31 425 420 415 0.09 0.01 0.01 29.7091
32 425 420 415 0.09 0.01 0.01 29.7091
33 425 420 415 0.09 0.01 0.01 29.7091

are relatively small compared to those for the othermain effect terms.
Therefore, the Kappa number may not change significantly when
these two variables are changed firom one level to the other level.
However, we set all the input factors at the upper levels since all
the main effect tems were satistically significant at 9926 confi-
dence level, and the Kappanumber was again reduced to 2.8448.
3. Application of the Improved EVOP

We also applied the improved EVOP which is the proposed meth-
od to the pulp digester benchmark model according to the proce-
dure shown in Fig, 2. As the first step of the D-optimal design, the
form of the model and the mumber of experiments were determined
in advance as a quadratic model and 33, respectively. Since the qua-
dratic model requires 28 parameters conceming six input factors,
at least 28 experiments should be conducted. Thus, we determined
the number of experiments per phase as 33, considering repetitive
experiments at the center point. Unlike the factorial design where
only one experiment is usually conducted for each experiment posi-
tion, these repetitive experiments at a specific position in D-opti-
mal design allow us to know whether the same results are obtained
or not at the position. Correspondingly, the results of experiments
and analyses using the D-optimal design have more reliability than
using the factorial design. Table 6 shows the result of the D-optimal
design and Kappa numbers obtained a each experiment position
for the first phase. Based on the experiment results, we built the
quadratic response surface model regarding the six mput fadors
and one response variable which is the Kappa number. After per-
forming the mitial regression, we discarded seven terms in the mod-
el that have very small parameter values, and then rebuilt the qua-

ll“I** ffssiensd

BEENEEREN

v

Kappa mumber

Fig, 5. Column plot for the coefficients of the response surface
model built at the first phase. The coeffident values are
mean-centered and scaled to unit variance.
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Table 7. The best operating conditions and resultant kappa numbers for each phase

Input factors Response variable
Tepes (K) Tasee (K) Tansee (K) Fiezr (M*/min) Fiarce (M*/min) F e (0 /min) Kappa number
1* phase 428 422 420 0.0924 0.012 0.0117 15.1897
2™ phase 429 426 428 0.0874 0.0154 0.0151 6.2836
3“phase 429 430 429 0.0904 0.0157 0.0166 3.0394

dratic model with 20 remaining important tetms. The parameter val-
ues of the response surface model at the first phase are shown in
Fig. 5 in the form of mean-centered and unit-variance-scaled coef-
ficient values. This figure shows that the parameter vales of the
first order terms are large compared to those of the second order
terms, which means that the nonlinearity in this experiment region
is not so severe. Besides, since all the parameter valies of the first
order terms have negatives, if the input factors are increased in the
region, the Kappa number is expected to decrease. These results
agree with real phenomena The fact that R? is 0.9952 and 7 0.8770
implies that the response surface model at the first phase explains
the variation of the experiment data quite accurately and well pre-
dicts the behavior of the Kappanumber in the experiment region.

To clearly find the values of the mput factors at which the Kap-
pa number was minimized in the region, we applied the Nelder-
Mead simplex method [Nelder and Mead, 1965] to the response
surface model, and obtained the optimal point in the experiment
region (Table 7). When we set the values as the operating condi-
tion of the pulp digester benchmark model, the Kappa number de-
creased from 29.7091 to 15.1897 as shown in Fig. 6.

The procedure implemented at the first phase was also repeated
at another two phases, and the constraints used at the second and
third phases of the conventional EVOP were also considered a these
phases. The determined ranges of the input factors at these phases
are shown in Table 5. The parameter values of the response surface
model built at the third phase are shown in Fig. 7. In this model,

Kappa number

Elapsed time (hour)

Fig, 6. Dearease in the kKappa number at the best operating con-
dition of the first phase. The kappa number rapidly de-
areases during the Shours from the start, and then reach
the new steady state.

July, 2002

only 19 important terms were used for the regression, and the R
and Q° of this model were 0.9781 and 0.8322, respectively. Note
that the coefficients of the response surface model in the experi-
ment region are different from those of the response surface model
constructed at the first phase because of the constraints and nonlin-
earity. When the best point found in the region by applying the op-
timization algorithm to the response surface model was set as the
operating condition of the pulp digester benchmark model, the Kap-
panumber finally decreased to 3.03%94 as shown in Fig. 8.

Kappa number
b 4 o »
—t
+— -
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—E—
o
—=
' -
-

Fig. 7. Column plot for the coefficients of the response surface

model built at the third phase, The coefficient values are
mean-centered and scaled to unit variance.

Kappa number

Elapsed time (hour)

Fig. 8. Dearease in the kappa number at the best operating condi-
tion of the third phase. The kappa number remaicably de-
areases during the 8 hours from the start, and then reach
the new steady state.



Improved Evolutionary Operation Based on D-optimal Design and Response Surface Method 543

Table 8. Comparison between the conventional EVOF and the improved EVOFP

No. of exp. Preservation of Reliability Detection of
(For one phase) original exp. region of results the optimum
Improved EVOP 33 Yes High Clear
Conventional EVOP 64 No Low Maybe ambiguous
4. Comparison of the Conventional EVOP and the Improved NOMENCLATURE
EVOP
We have applied both the conventional EVOP and the improved b : parameter vector of a quadratic response surface model,

EVOP to the pulp digester benclimark model to find the optimal
operating condition on the assumption that the charactenistics of
the process were not known. We can summerize the comparison
results as follows (Table 8). First, the mumber of experiments for
each phase was 64 for the conventional EVOP and 33 for the im-
proved EVOP. Second, when there were experimental constraints,
the origmal expenment region was mamtained for the mproved
EVOP while it shrank for the conventional EVOP. Tf we compare
Tables 3 and 5, we can see that the ranges of T, Frpey and Fpy
for the improved EVOP are larger than those for the conventional
EVOP. Third, m the case of the improved EVOE, we can have con-
fidence m the results of expermments and analyses by repeating ex-
periments at a specific position. Finally, the best operating condi-
tions for each experiment region were obtamed more clearly by virtue
of the response surface model adopted in the improved EVOP.

Although a smaller Kappa number, 2.8448, was obtained for the
conventional EVOP compared with 3.0394 for the mmproved EVOP,
the two values do not show significant differences. Moreover, it
can be surely said that the mmproved EVOP 15 a much more efficient
method than the conventional EVOP from the viewpomt of the pre-
viously mentioned advantages.

CONCLUSIONS

In this paper, en mproved evolutionary operation (EVOP) based
on D-optimal design and response surface method (RSM) was pro-
posed. To test its performance and supenionty to a conventional
EVOP, we applied both the conventional EVOP and the improved
EVOP to the pulp digester benchmark model. As a result, the im-
proved EVOP showed comperable performance with adventages
on the mumber of experiments, preservation of original experiment.
region, reliability 1 the results of expenments and analyses, and
determmation of the best operating condition for each experiment
region. These benefits are generated by the properties of D-optimal
design and RSM and make the proposed method more applicable
m practical problems than the conventional EVOP.

Although we enhenced the performance of the conventional
EVOP by modifymg its several properties, we have to keep m mind
that the key point for the successtul application of the proposed meth-
od to the real mdustry 13 the harmomous collaboration among all
the participants. In addition, the selection of the appropnate pro-
cess, pre-experiment on the pilot plant and education for industrial
operators should precede the real application of the method.
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with the size of (1 +2n +r@] by 1

b : the coefticient for the cross product term of 1th mput fac-
tor and jth mput factor m the response surface model

Faue  : flowrate of the trim white liquor into the extended mod-
ified continuous cooking zene [m*/min]

Fieoe  : flowrate of the trim white liquor into the modified con-
tinuous cocking zone [m’*/min]

Fipsr  : flowrate of the reacted white liquor extracted from the
cook zone [m*/min]|

Kappa number : mass fraction of the lignin content m wood chips

[-]

m : number of experiment data used in modeling

MSE  :mean squared error [=3SE/m—1-number of terms
used)]

n : number of input factors

PRESS : prediction sum of squares

o8 : the degree to which the variation of a response variable
18 predicted by the response surface model [-]

R’ : the degree to which the variation of a response vanable
is explained by the response surface model [-]

s : number of experiment data not used i modeling

SSE : error sum of squares

SST : total sum of squares

Toe  :temperature of the mixture mto the cook zone [K]

Towe  temperature of the trim white liquor into the extended
modified continuous cooking zone [K]

Tyee  : temperature of the tnm white liquor into the modified
continuous cooking zone [K]

X - design matrix with the size of (1 +2n +H(HT_1)) by
m contamming the mformation of the experiment posi-
tions

Xy : kth experiment position of Ith input factor

¥ : vector of a response variable with the size of m by 1

v, : ithreal response value used in modeling

Y, : jthreal response value not used n modeling

v : overall mean of the response values

¥ : ith response value fitted by the response surface model

¥, : jth response value predicted by the response surface
model

Greek Letter

o : variance of model error

Subscripts

Coolk  : cook zone
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DIL - dilution water

EMCC : extended modified contimious cooking zone

i : index of response values used in modeling

] : index of response values not used in modeling

k : mdex of experiment positions

! : index of input factors

LOWEX : lower extract from the modified continuous cooking
zone

MCC  : modified continuous cooking zone
UPEX : upper extract from the cook zone
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