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Abstract-This paper presents improved evolutionary operation based on D-optimal design and response surface 
method. D-optiraal design and response sta-face method allow us to overcome the disadvantages of conventional 
evolutionary operation. Although evolutionary operation has been an effective alternative when fimdamental models 
are hard to build because of the lack of the necessary information, the disadvantages in the number of experiments, 
experimental design and analysis and detection of the optiraal point have prevented EVOP front being fi-equently ap- 
plied to real processes. To compare the perforntance of the proposed method and the conventional EVOR both of them 
were applied to a pulp digester process. As a result, the comparable response variable value has been dearly obtained 
with the proposed method while conducting much fewer numbers of experiments than the conventional evolutionary 
operation. In addition, the proposed method flexibly hozKtles the constraints in the experimental design ozKt gives more 
reliable experiment results than the conventional evolutionary operation. By vii-me of these benefits, the proposed meth- 
od can be utilized effectively for a process where prior knowledge for the process is not available. 
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INTRODUCTION 

It has been indispensable for industry to cut down operating costs 
and to enhance the quality of products to survive in extreme com- 
petition. To actfieve these goals, we should find the optimal operat- 
ing conditions at which to operate a plant_ Although industrial op- 
erators have improved operating conditions based on their previ- 
ous experiences, their operating methods might be neither system- 
atic nor economical. Thus, it usually takes a great deal of time to 
reach the optimal operating condition and it may not be the glo- 
hal optimum, even if" they have found out an improved point To 
solve this problem, various optimization methods based on mathe- 
raatical progiamming have been proposed [Lee and Lim, 1999; Choi 
et at., 2000; Janson, 2001; Choi and Manowionthalds, 2002]. The 
methods necessarily include first principle models for a process as 
equality constraints in an opfimizatioi-L Therefore, only if the mod- 
els can describe the given system to an acceptable degree we can 
use these raetttods to effectively locate rite optimum point. On rite 
other hand, the necessity for the accurate first principle models re- 
stricts usefulness of the methods because it is very difficult and time- 
consumiug to build the fn-st principle raodels for an utMtown pro- 
cess whose static and dynamic behaviors cannot be exactly mod- 
eled. For tiffs reason, the mathematical programming based raetit- 
ode have been usually applied to relatively simple and well-known 
processes such as ntility plants [Lee et at., 1998a, b; Yi and Han, 
2001]. 

Evolutionary operation (EVOP) proposed by Box [1957] can be 
applied for this case since it allows us to fmd the optimal operating 
condition without wing the first principle models. There have been 
many cases where EVOP was applied for the optimization of chem- 
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ical processes [Hunter and Kittrdl, 1966]. Although the application 
cases of EVOP have rapidly decreased since the 1970s because of 
advances in modeling tectmiques, EVOP has many usefifl proper- 
ties as an optimization method. In particular, it is advantageous to 
the optimizafon of ccntplex processes since EVOP does not require 
accurate first principle models for a process. 

This is proved by the fact that EVOP is again being wed for the 
optimizaXion of bioprocesses for which the inner phenomena are 
not clearly understoo& Banerjee and Bhattacharyya [1993] applied 
EVOP to a bioprocess, where iiffc~nation on the process was in- 
sufficient, to maximize enzyme activity using three inducers. Tunga 
et at. [1999] also wed EVOP to maximize the production of pro- 
tease by opflnizing the conceim-aticns of vitoznm, metal ion and 
plant hormone. Saad [1994] showed that EVOP could be wed for 
the optimization of the porcelain enamel manufacturing process. 
All of them mentioned that EVOP could be applied to unknown 
processes as a superb optimization technique. However, several dis- 
advantages of EVOR such as a 1ozge number of experiments, ant- 
biguousness of the analysis result on the direction of process im- 
provement, and excessive reduction of experiment region in the pres- 
ence of constraints, should be overcome for its more fieque~tt ap- 
plications to real problems. 

Conseque~ttiy, in tiffs papei; we propose an improved EVOP that 
overcomes the limitations of a conventional EVOR In the pro- 
posed method, D-optimal design and restxx~e surface method (RSM) 
are wed to solve the problems. D-optimal design, which is known 
as one of the most efficient experimental design methods, has been 
greatly developed by Mitchell [1974], Johnson and Nachtsheim 
[1983], and DuMouchel and Jones [1994]. MitdM1 [1974] pro- 
posed DETMAX algorithn which is known as the origin of the mo- 
dent D-optimal design algorittmt. Johnson and Nachtsheim [1983] 
suggested some guidelines to construct exact D-optimal designs 
on convex design spaces. They recommended Galil and Kiefer's 
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method [Galil and Kiefer, 1980] and Powells method [Powell, 1964] 
to det~nline a good starting design and to efficiently find a D-optJlnal 
experiment subset from the viewpoint of optimization, respectively. 
D-optimal design was fiz-ther advanced by DuMouchel and Jones 
[1994]. They modified tile algoiitiml of D-optinlal design by com- 
bining Bayesian paradigm with the notion of primary and potential 
temls to make it lnore resistant to tile biases caused by an incorrect 
model. Response strface method (RSM) for building an empirical 
model using experiment data was first addressed by Box and Wil- 
son [1951 ], and tilen has been uhliTed in many fields including chem- 
ical engineering, bioengineering, pulp and paper industry, and phar- 
maceutical indusily since it is a well-established method for inves- 
tigating the causal relationship between inputs and oulputs for a sys- 
tem [Park et al., 1996]. 

In tiais study, fa-st, we explain how tile problems of tile conven- 
tiorlal EVOP are solved by D-optimal design and response surface 
method. Then, we compare the performance of the proposed meth- 
od with that of tile conventional EVOP by applying boti1 metilCdS 
to the pulp digester benchmark model [Kayihan, 1997]. 

THEORETICAL B A C K G R O U N D  

1. EVOP and Its Improvement Based on D-optimal Design 
and RSM 

EVOP is a method for process improvement proposed by Box 
ill 1957 [BOX, 1957]. Tile basic philosophy of EV�9 is tilat indus- 
trial processes should be run so as to generate not only products but 
also tile ilffonnation Oil how tile product can be improved. By ap- 
plying EVOP to a process, operators explore an unexperienced oper- 
ating region on the basis of results of 2" factorial design of experi- 
nlents. And then, tiley move an ope~-athg condition to a bel~ea poil~t 
by statistic@ investigating the effects of input factors. EVOP is 
implemented in an actual process itself as an operation mode. That 
is, it is ritually a permanent method of mnning a plant. Therefore, 
it does not require special facilities and concessions. 

Basically, a conventional EVOP can be camed out by following 
several steps as shown in Fig. 1. Of the steps, the 2 ~ factorial design 
[Box and Draper, 1987] as an experimental design method and ststis- 
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Fig. 2. Flow chart representing the procedure of the improved 
EVOP. In the figure, MLR and PLS represent Multiple Lin- 
ear Regression and Partial Least Squints, respecUvely [Gel- 
adi and Kowalski, 1986]. 

tical test procedure dinlinish tile usefulness of EVOP and prevent 
it from being frequently applied to real plants as an optimization 
method in spite of its many advantages. First the 2 ~ factorial design 
used in tile conventional EVOP requires too large a nunlber of ex- 
periments to be applied to a real problem. In addition, it exces- 
sively cuts offthe original experimeut region to make the irregular ex- 
perinlent region symnletlic when tilere are ~xperinlental constraints. 
Finally, the statistical test procedure of a conventional EVOP such 
&s analysis of variance (ANOVA) [Neter et al., 1996] is cunlber- 
some and its result may be ambiguous when a large ntrnber of in- 
put factors are included in the procedure. For example, we cannot 
clearly determine where to move tile operating conditic~l for tile 
case that the main effects are not significant but the interaction ef- 
fects are significant or that only one experiment is conducted for 
each experiment position due to the limitation in the number of ex- 
periments [Neter et al., 1996]. 

Therefore, we adopted D-optilnal design and RSM in tile pro- 
posed method instead of the 2 ~ factorial design and statistical test 
procedure to solve these problems of the conventional EVOR The 
procedure of tile improved EVOP based Oil these nletheds is shown 
in Fig. 2. In the figure, the distinctive parts of the improved EVOP 
are denoted in italic letters. Tile advantages of tile improved EVOP 
are as follows. First, the number of experiments greatly decreases 
especially when many input factors are used in the experiments. 
Secc~ld, tile experiment region is taken as broadly as possible, not 
cuNrlg off the original experiment region when the experiment re- 
gion is irregular due to various experimental constraints. Third, the 
analysis results on the direction of process improvement are more 
reliable since we can make sure that the results of experiments are 
correct by tile repetitive experiments in D-optilnal design. Finally, 
the best operating condition for an experiment region can be deter- 
mined more clearly by applying an appropriate optimization algo- 
n~tml to tile model built by RSM. These advantages will be explailled 
in detail along with the properties of D-optimal design and RSM. 
2. D-optimal Design as an Experimental Design Method 

Experimental design oi- design of experiments (DOE) [Box and 
Draper, 1987] is a theory on how to arrange the experiment posi- 
tions to a, dract importm~t ilffonnation fi-oln tile i-osults of a,~peliments 
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while minimizing the munber of experiments For apmcess for vdfich 
frst principle models are not avmlable, DOE cm be used effec- 
tively to understand the input-output structure of the process. Once 
we know the causality of  the process, we can optimally tune the 
input factors to improve the perfonnmce of the process In the pro- 
posed mahod shown in Fig. 2, D-optimal design is used as aDOE 
method instead of the 2 ~ factorial design used in the conventional 
EVOP. In D-optimal design, a simple polynomial model represent- 
hag the relationship baween input factors md a response variable 
is built ~ the results of  experiments to investigate the effects of 
inlmt factors on aresponse vadabla This model is then usedto max- 
imize the performance of aprocess as well as to predict a response 
variable value at a specific position. 

The algorithm olD-optimal design is as follows [Mitchell 1974; 
DuMonchel and Jones, 1994]. 

Step 1. Daennine the proper form of the model andthe number 
o f  experim ents. 

Step 2. Make a candidate set comprised of extreme vertices, cen- 
ters of  the edges, centers of faces and overall centmid of  the con- 
sa'ained region [Piepel, 1988]. 

Step 3. Randomly select the initial experiment set fi-om the can- 
did~e set so that the number of experiments in the selected subset 
is equal to the predetermined number of  experiments. 

Step 4. Interchange each experiment position in the set wkh a 
new one in the candidate set uutil determinant of XrX is maxi- 
mized, utaere X is the design marix containing the information on 
the arrangement of input factors within specified ranges. 

When selecting experiment positions, D-optimal design employs 
the criterion o f  maximizing det(XrX), as described in the algo~un 
of D-optimal design. The folloMng equation shows the variauce- 
covariance malrix for the parameter vector b used in the model 
[Neter et al., 1996]: 

var{b }=o'~(XrX') -x (1) 

From the above equation, we cm see that if we maximize XrX, the 
variances ofthepa-smeters are minimized mdthus m accurate mod- 
el cm be obtained. However, XrX cannot be maximized since it is 
a m~trix. Therefore, XrX should be made to a scalar ~ i c h  repre- 
ser~s the magnitude ofXrX andthe detemainant is used for this pur- 
pose in D-optimal design. That is, D-optimal design can be said to 
make the parameter voriances as small as possible by arranging the 
experiment positions as broadly as possible according to the crite- 
rion, the m aximizmion of  det(XrX). 

D-optimal design has several a~antages over the factorial designs. 
Theoretically, we can reduce the ntunber ofexpaiments to the num- 
ber of  parameters used in the model with D-optimal design. This 
property of  D-optimal design is effectively utilized when a large 
number of  input factors are included in the step o f  ~cperimental 
design. Table 1 shows the relationship between the number of in- 
put factors md the minimum number of experiments for three well- 
known DOE methods: 2 = factorial design, 3 = factorial design, and 
D-optimal design [Box and Draper, 1987; Neter et al., 1996]. Note 
that the D-optimal design requh-es the smallest nanlber of  experi- 
ments among the methods, with increasing the number of input fac- 
tors. 

Fig. 3 shows the difference between the factorial designs and the 
D-optimal design regarding the experiment region. In the flgnre, 

Table 1. The number of  expcl~nents required for the three DOE 
methods. As the immber of  input factors increases, the 
numbers of experiments for the two factorial designs 
rapidly increase 

Number of 
2 3 4 5 6 

input factors 

Number of experiments 

2" factorial design 4 8 16 32 64 
3" factorial design 9 27 81 243 729 
D-optimal design 6 10 15 21 28 
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Fig. 3. Experiment regions M the factorial design stud D-opfimat 
ae~ign. Gray-catored regions mean original experimmt re- 
,o i ls .  

the use of D-optimal design does not cut off the original exp~i- 
ment region when the region becomes irregular due to a constraint. 
This property results in the derivefion of the correct causal rel~ion- 
ship between input factors and aresponse weriable. 

Generally, since expertments can be repetitively conducted at a 
specific position in D-optimal design, it is an additional advantage 
that the analysis results on the direction of process improvement 
are more reliable than those of the factorial designs. For factorial 
design, usually only one experiment is conducted for each experi- 
ment position, othewfise the munber of  experiments increases sig- 
nific~atly due to the symm~ric propeay of the factorial designs For 
instance, if we use 2 ~ factorial design, the number of experiments 
increases to 1024 for only 10 input factors even though only one 
experiment is conducted for each expefimeN position. On the other 
hand, since experiments can be repetitively conducted at a specific 
position ha D-optimal design, we can confrm that all results for the 
repetitive e~:petiments produce the same response values. There- 
fore, we can be convinced that the results of the expetinents are 
correct if all results for the repetitive expetinents are equal to eada 
other, and otherwise we should carry out experiments again. This 
fact means that the r~alts for the experiments and malyses obtained 
by D-optimal design are more reliable thin by the factorial designs. 
3. Response Surface Method 

Response surface method is a method for building a response 
surface model which aptxoximates the actual behavior of  a response 
variable in a given experiment region by fitting response variable 
values obtained flora designed experiments [Box and Drape, 19~7]. 
In a conventional EVOP, the dkection of process improvement is 
determined by analyzing the results of statistical tests with mhich 
the effects o f  input factors on a response variable are investigated. 
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Unfortunately, it happens frequently that we cannot obviously deter- 
raine where to move the operalmg condifon with the analysis re- 
sults since the results are not typically clear, especially when there 
are a large number of  input factors or when mean squared elTor 
(MSE) is sraall due to the small narnber of expeiimeiKs. However, 
if'we apply the adequate optimization algorithn to the response sur- 
face raodel built by RSM, the best opevatitg c~xldition wiffml a given 
experiment region can be clearly determined. 

The following response surface model described by a set of the 
second order polynonfial equations is fi-equently used since it is the 
simplest form of nonlinear models: 

y=Xrb (2) 

where, 

1 Xzl X12 . . .  Xz~ ~ Xzl Xz2 . . .  XI~ ~ XzzX12 XzzXz3 . .  Xz~ ~ zXz~ 

2 2 2 
X = 1 121 X22 X2~ 1 X21 122 . . .  X2r , X21122 121123 X2r , ~X2,, (3)  

b =[ bDD b~0 b:D ... b,D bn b:: ... b,,bnb,:...b, ~, ]r, (a) 

y=[  y~ y: ... y,, ]r (5) 

However, since the simplicity deteriorates the prediction capability 
of the model in a broad region, it is required to adjust the experi- 
raent region properly. If  the region is too small, too many experi- 
ments should be conducted to exlmct the necessary infbrmation for 
the entire expel~ent region. By conb-0~st, if the region is too large, 
the response surface model built in the region has poor prediction 
performance. Therefore, it is important to determine the optimal 
size of the experiment region, which guarantees both the minimi- 
zation of the number of experiments and the satisfactory prediction 
capability of the response surface model, by using prior icnowledge 
for a process or sensitivity analysis and so forth. 

The perfolTnance of the response surface model is generally evalu- 
ated by calculating R 2 and Q~ as follows, respectively: 

R~=I SSE 
SS---~ (6) 

Q:=I  PRESS 
S S-------C- (7) 

where, 

SSE(Error Sum of Squares)=~(y,.-~9,.)2, (8) 

SST(Total Sum of Squares)=~(y, y)~, (9) 

PRESS(PREdiclion Sum of Squares) s (10) 
y 1 

R ~ represents the degree to which the variation of a response var- 
iable is explained by the response surface rac~ l  and Q~ the degree 
to which the variation of a response variable is predicted by the re- 
sponse surface model. With R ~ approaching one, the variation of a 
restx~se variable explained by the respome surface raodel increases. 

And with Q2 approaching one, the prediction performance of the 
response surface raodel increases. 

CASE STUDY 

1. Process Description 
To test the proposed raefflod, the pulp digester benchinark racx]el 

[Kayihan, 1997] was nsed which simulates the dynamics of a real 
pulp digester process. The process aims at removing the lignin from 
wood chips by causing reaction on the white liquor, the raain constit- 
uents of which are sodium hydroxide and hydrcsulfide. The elNre 
process is composed of four sub-processes: the impregnation ves- 
sel, the cook zone, the modified continuous cooking (MCC) zone, 
and the extended modified contitmons cooking (EMCC) zone. In 
Fig. 4, the raatfipulated variables of the process are the teraperature 
of the mixture into the cook zone (Tc~o~), the temperature of the trim 
white liqure into MC~ zone (T~,~,c), the temper~re of the trim white 
liquor into EMCC zone (T~fcv), the flowrate of the reacted white 
liquor exlracted from the cook zone (Fc~zx), the flowrate of the trim 
wkite liquor into MCC zone (Ffcv), and the flowrate of the tmn 
white liquor into EMCC zone (FE~,~,c). These six variables are used 
as input factors for the experimellts. The Kappa number defined 
by the following expression represeiKs the ligiml content in wood 
chips and is the response variable that should be minimized in the 
process: 

Kappa . . . . .  the lignin mass (11) 
numoer -o~qth e total solid mass 

Since both the conventional EVOP and the imtxoved EVOP are 
the methods which are directly applied to a real process itseff, all 
the experiments in this study are regarded as ac~al experimellts 
although they are simulatiom. On the assarnption that the first plm- 
ciple models cannot be built for the process, we apply both the con- 

white Hquor 
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l 

Impi~gma~loa v, el 

F~eEx 
FLOWEX 

MCC 

Kappa # 
TI~MC.C 

~ Fmcc 
FDU~ 

Fig. 4. Process diagram of the pulp digester benchmark model. 
MCC and EMCC stand for modified continuous cooking 
and extended modified continuous cooking, respectively. 
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Table 2. ANOVA table for the first phase (MSE~=0.0214) 

539 

rel ln Degree of freedom ~ Sum of squares ~ Mean square 4 F statistics 5 P-value ~ 

Tcoo~ 1 407.3722 407.3722 19048.5475 0.0001 

Tucc 1 402.1474 402.1474 18804.2388 0.0001 

T~vec 1 389.3918 389.3918 18207.7928 0.0001 

FvFEz 1 668.9536 668.9536 31279.9839 0.0001 

FMec 1 618.5026 618.5026 28920.9164 0.0001 

FFvec 1 1089.6477 1089.6477 50951.4602 0.0001 

Tc~o~TMc c 1 2.1118 2.1118 98.7482 0.0001 

Tcoo~T~vcc 1 1. 6958 1.6958 79.2929 0.0001 
Tcoo~Fv~ 1 1.5778 1.5778 73.7781 0.0001 

Tc~oyuc c 1 3.1690 3.1690 148.1801 0.0001 

Tcoo~F~vec 1 4.4849 4.4849 209.7128 0.0001 

TMceTFvec 1 4.7361 4.7361 221.4590 0.0001 

TMccFupex 1 0.7070 0.7070 33.0594 0.0001 

TMceFvec 1 1.2893 1.2893 60.2886 0.0001 

TvccFFvcc 1 0.0245 0.0245 1.1447 0.2908 

T~vooF ~pFz 1 1.0912 1.0912 51.0223 0.0001 

T~vecFvce 1 0.6884 0.6884 32.1904 0.0001 

TzvccFzvcc 1 3. 0772 3.0772 143.8873 0.0001 

F ~ F v c  c 1 9.2102 9.2102 430.6668 0.0001 
F ~ F ~ c c  1 11.0104 11.0104 514.8401 0.0001 

Fvc,c,F~vc, c, 1 13.7160 13.7160 641.3545 0.0001 

Error 42 0.8982 0.0214 

Total 63 3635.5031 

M S E= SSE/(Degree of freedom for error) 
2Degree of freedom (for each temO number of levels for the corresponding term 1 2 1 1. Degree of freedom for error and total data 
is defined as 'Yn- 1 -number  of terms used" and 'Yn- 1". 

3Sum of Squares=total sum of(mean for the corresponding term overall mean) 2 
4 Mean Square= Sum of S quares/(Degree of freedom) 

~F statistics=Mean Square/MSE 
~P-value fight portion of the F statistics in the corresponding F-disbibution, that is, the probability that the telln is not significant com- 
pared with error 

venfonal EVOP and the improved EVOP to the process to find the 
optimal set of the input factors at which Kappa number is mini- 
mized. Note that we assume that noises and disttabances, which 
may occur in the real process, are filtered out to observe the effects 
of the input factors apparently since there are no noises and distar- 

bances in the simulated values. 
2. Application of the Conventional EVOP 

At first, we applied the corrventional EVOP to the pulp digester 

benctmlark model. According to the procedure shown in Fig. 1, we 
designed experiments with a 2* factorial design to detemline the 

expeiiment positions after specifying the appropriate ranges of the 
input factors. Since there are the six input factors, 26 (=64) experi- 
ments were run for each phase. A phase meam one implementation 

of the whole procedure shown in Fig. 1 or Fig. 2 and we com- 
pleted three phases to fred the optimal operating condition. If we 

use a 3 ~ factorial design instead of the 2 ~ factorial design, the num- 
ber of experimeuts increases to 36 (=729). In addition, it should be 

noticed that the better operating condition which may exist between 
the upper and lower levels of the input factors cmmot be detected 
with the 2" factorial design. 

After 64 experiments were completed based on the results of the 
2" factorial design, we statistic@ tested the significance of various 
effects using ANOVA to find the direction of process improvement 
(Table 2). At the fwst phase, all the terms except the TMc~;FEMcv term 
shown m Table 2 were significant at 99% coiffidence level since 

their p-values (right partion of the F statistics in the corresponding 
F-distribution) were smaller than 0.01. The result means that if we 
change the value of each input factor fi-onl one level to the other 

level, the Kappa number chmges in a statistic@ sigmficmlt man- 
nel: The direction of change in the Kappa nmnber can be iiffen-ed 

fi-om the knowledge on the process. For example, tile Kappa num- 
ber is expected to decrease because of the increase in the reaction 

rate if we increase Tc~. Based on the knowledge and ANOVA re- 

sults, we concluded that all of the main effect temls (Tc~, Tfcc, 
TzMc~,, F ~ ,  FMc, c,, and FEMcv) had negative and significant effects 

on the Kappa numbeE Therefore, we set all the input factors at the 
upper levels within their ranges to reduce the Kappa number. The 

significance of the interaction effect terms (the terms except for the 
main effect temls in Table 2) implies that the effect of each input 
factor is not additive and the process has nonlinearity in this region. 
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However, the mean square values for the interaction effect terms 
are so small compared with those for the main effect tenns that the 
interaction effects may be ignored. Moreover, it should be noted 

that we may draw an elroneous conclusion from the ANOVA results 
since the significance of all the tenns was derived fic~n a snmU mean 
squared error value caused by the small number of experiments. 

Since the Kappa number was reduced fi-om 29.7091 to 15.0705 
when all of  the input factors were set at the upper level in the first 

phase, we entered the second phase of the conventional EVOR At 
the second arid ttmd phases, expelmlental constraints described by 
Eqs. (12) and (13) were introduced to the experimental design step 

on the assumption that experiments at specific points cannot be con- 
ducted due to environmental or economical reasons: 

0.00185Tc~+F ~pE:r<0.893 (12) 

0.419F ~pz~:+ FE~wcc-< 0.0528 (13) 

Eq. (12) means that if the tnnpemtul~ of the mixture into the cook 

zone is too high, we must reduce the flowrate of the reacted white 
liquor extracted fi-oln the cook zone. Tim constraint reflects the en- 
vironmental restriction that hot wastewater should not be discharged 

into nacre  in a large amount Eq. (13) takes into accouut the oper- 
almg costs. That is, if  file reacted white liquc~- is extracted sufficimNy 
from the cook zone, the flOWl-ate of the N m  white liquor into EMCC 
zone should be reduced since most of the lignin m the wood chips 
is expected to be already removed at the cook zone. In addition to 

these cons~aints, the upper limits to which the input factors can be 
adjusted were specified in the third phase since we cm~lot increase 
the input factors infinitely. Considering these constraints, we deter- 

mined the 1-anges of the input factors as shown in Table 3. As for 
the second phase, since all of the terms were significant at 99% con- 

fidence level, all the input factors were again set at the upper levels 
within their l'anges despite some ambiguity m the ANOVA results. 

Because the Kappa number again decreased to 4.4173 at the oper- 

ating condition found in the second phase, we again entered the third 
pt~se. After perfonning the same proce&are as the previous pisses, 

Table 3. The determined ranges of the input factors for the conventional EVOP 

Input factors Respons e variable 

Tc,oo~(K ) Tuc,c,(K ) TEvc,c,(K) FupEx(m3/min) Fuc,c,(m3/min) FEuc,c,(m3/min) Kappa number 

Nominal operating condition 425 420 415 0.09 0.01 0.01 

Upper limit 435 430 432 0.1 0.02 0.017 

P* phase • • • • • • 

2 "~ phase • 5 • 4 • 10 • 0.0031 • 0.004 • 0.0026 

3 ~ phase • • • • • • 

29.7091 

Table 4. ANOVA table for the third phase (MSE =0.9208) 

Term Degree of freedom Sum of squares Mean square F statistics P-value 

Tc,ooe 1 10.5279 10.5279 11.4335 0.0016 

Tvc, ~, 1 303.1830 303.1830 329.2608 0.0001 

TEMc,c, 1 47.5748 47.5748 51.6669 0.0001 

F v~Fx 1 4196.3383 4196.3383 4557.2802 0.0001 

FMc, c, 1 1834.0513 1834.0513 1991.8046 0.0001 

F~c,c 1 174.2941 174.2941 189.2858 0.0001 

Tc~okTMcc 1 6.7279 6.7279 7.3066 0.0099 

Tc,oo~TEMc, c, 1 1.3117 1.3117 1.4245 0.2394 

Tc,oo~FvFEx 1 18.3160 18.3160 19.8915 0.0001 

Tc~okFMcc 1 0.0018 0.0018 0.0019 0.9651 

Tc,oo~FEMvv 1 0.073 9 0.073 9 0.0802 0.7784 

T~c,c,TEuc,v 1 17.2698 17.2698 18.7553 0.0001 

TMccF~p~ 1 11.9633 11.9633 12.9923 0.0008 

T~vvFMvc, 1 4.1417 4.1417 4.4980 0.0399 

TMccF~Mcc 1 0.4351 0.4351 0.4726 0.4956 

T~Mc,vFupzx 1 0.0316 0.0316 0.0343 0.8539 

TEMc,c,F~c,c, 1 0.6475 0.6475 0.7032 0.4065 

TFMccFFMcC 1 0.1139 0.1139 0.1237 0.7268 

F wExFMc,c 1 876.4486 876.4486 951.8351 0.0001 

F wExFE~c,c, 1 62.4882 62.4882 67.8631 0.0001 

FMccFFMcc 1 28.5015 28.5015 30.9530 0.0001 

Error 42 38.6736 0.9208 

Total 63 7633.1155 
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Table 5. The determined ranges of the input factors for the improved EVOP 
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Input factors Response variable 

Tc~ (K) T~cc (K) Tepee(K) F ~  (m~/min) F ~  (m~/min) F ~  (m~/min) Kappa number 

Nominal operating condition 425 420 415 0.09 0.0 0.01 

Upper limit 435 430 432 0.1 0.02 0.017 

1 ~ phase +3 +2 +5 +0.003 +0.002 +0.0017 

2 ~ phase +6 +4 +10 +0.005 +0.004 +0.0034 

3'aphase +5.8 +4.1 +4.3 +0.013 +0.005 +0.0019 

29.7091 

we obtained the ANOVA table shown in Table 4. In this table, the 
eight interaction effect terms ~F~T~ecc, Tcs,fiT~cc, Tcs,~z~ce, T~c 
F~c, T~ecF~cc, Tz~ccF~er, Tz~ccF~c, and Tz~c~ecc:) are not sig- 
nificant at 99% confidence level as their p-vahes are larger than 
0.01. Moreover, the mean square values for T ~  and T ~  terms 

Table 6. The exp erhnent set sdected by the D-opthnal design and 
exp ernnent results 

Exp. Te~ T~ee Tepee F~er F~wee Fe~ e Kappa 
no. (K) (K) (K) (m~/min) (m~/rnin)(m~/min) number 

1 422 418 410 0.0875 0.008 0.0083 50.4072 

2 428 418 420 0.0875 0.008 0.0083 39.2747 

3 422 422 420 0.0875 0.008 0.0083 40.3719 

4 428 418 410 0.0925 0.008 0.0083 35.3751 

5 422 422 410 0.0925 0.008 0.0083 37.1424 

6 422 418 420 0.0925 0.008 0.0083 37.2859 

7 422 418 420 0.0875 0.012 0.0083 37.0905 

8 422 422 410 0.0875 0.008 0.0117 34.7424 

9 422 418 420 0.0875 0.008 0.0117 33.7384 

10 422 418 410 0.0925 0.008 0.0117 34.2205 

11 422 422 420 0.0925 0.008 0.0117 23.4967 

12 428 422 420 0.0875 0.012 0.0117 19.5513 

13 428 422 410 0.0925 0.012 0.0117 18.8359 

14 422 41g 410 0.0925 0.011 0.0083 37.9273 

15 422 41g 413 0.0925 0.012 0.0083 34.4112 

16 422 422 420 0.0925 0.012 0.0094 23.132 

17 422 419 410 0.0875 0.012 0.0117 32.1861 

18 428 418 410 0.0875 0.012 0.0106 31.9846 

19 428 418 410 0.0892 0.008 0.0117 32.746 

20 428 418 420 0.0925 0.009 0.0117 21.3095 

21 428 422 410 0.0875 0.009 0.0083 36.3788 

22 428 422 420 0.0925 0.008 0.0106 21.3935 

23 428 422 420 0.0925 0.011 0.0083 22.8632 

24 428 421 410 0.0875 0.008 0.0117 31.8598 

25 428 419 420 0.0925 0.012 0.0083 23.9994 

26 424 418 420 0.0925 0.012 0.0117 21.5992 

27 424 422 410 0.0875 0.012 0.0083 34.0915 

28 422 420 415 0.09 0.01 0.01 32.511 

29 425 420 410 0.09 0.01 0.01 32.0554 

30 425 420 415 0.0875 0.01 0.01 33.1293 

31 425 420 415 0.09 0.01 0.01 29.7091 

32 425 420 415 0.09 0.01 0.01 29.7091 

33 425 420 415 0.09 0.01 0.01 29.7091 

ave relatively small compa'ed to those for the othermain effect terms. 
Therefore, the Kappa number may not change significantly when 
these two variables are changed from one level to the other level. 
However, we set all the input factors at the upper levds since all 
the main effect terms were statistically significant at 99% confi- 
dence level, and the Keppanumber was again reduced to 2.8448. 
3. Applicat ion of the  Improved EVOP 

We also nppfied the improved EVOP x,vhich is the Woposed meth- 
od to the pulp digester benchmark model according to the proce- 

shown in Fig. 2. As the first step of the D-optimal design, the 
form of the model andthe rmmber of experiments were detesmined 
in advance as aquadrafic model and 33, respectively. Since the qua- 
dratic model requh-es 28 pa'ameters concerning six input factors, 
at least 28 experiments should be conducted. Thus, we determined 
the number of experiments per phase as 33, considering repetitive 
experiments at the center point. Unlike the factorial design where 
only one experiment is usually conducted for each experimera posi- 
tion, these repetitive experiments at a specific position in D-opti- 
mal design allow us to know whether the same results are obtained 
or not at the position. Correspondingly, the results of experiments 
and analyses using the D-optimal design have more reliability than 

using the factorial design. Table 6 shows the result of the D-optimal 
design and Kappa numbers obtained at each experiment position 
for the s phase. Based on the r results, we built the 
quadratic response surface model regarding the six input factors 
and one response variable which is the Kappa number. After per- 
forming the initial regression, we discaded seven terms in the mod- 
el that have very small parameter values, and then rebuilt the qua- 
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F i g  5. Column plot for the coefficients of the response surface 
model built ~t the First phase. The coeflld~nt values are 
mean-cmtcred and scaled to unit variance. 
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Table 7. The  best  operat ing  condit ions  und resultant kappa  n u mb e r s  for each phase  

Input factors Response variable 

Tco~, (K) T~r (K) T~r162 (K) F ~ =  (m~/min) Gr162 (m~hnin) F ~ r  (mVmin) Kappa number 

1 '~ phase 428 422 420 0.0924 0.012 0.0117 15.1897 
2 ~phase 429 426 428 0.0874 0.0154 0.0151 6.2836 
3 '~phase 429 430 429 0.0904 0.0157 0.0166 3.0394 

chaic model with 20 remaining impcrtant teang The parameter val- 
ues of  the response an-face model at the first phase are shown in 
Fig. 5 in the form of mean-centered and unit-valance-scaled coef- 
ficient values. This figure shows that the parameter values of the 
frst order temas are large compared to those of the second order 
terms, which means that the nonlinearity in this experiment region 
is not so severe. Besides, since all the parameter values of the In-st 
order tmns have negatives, ffthe input factors are increased in the 
region, the Kappa number is expected to decrease. These results 
agree with real phenomena The fact that R: is 0.9952 and Q: 0.8770 
implies that the response sanface model at the fkrst phase explains 
the variation of the experiment data quite accurately and well pre- 
dicts the behavior of the Kappanumber in the experiment region. 

To clearly fnd  the values of  the input factors at which the Kap- 
pa number was minimized in the region, we applied the Nelder- 
Mead simplex method ['Nelder and Mead, 1965] to the response 
atfface model, and obtained the optimal point in the experiment 
region (Table 7). When we set the values as the operating condi- 
tion of the pulp digester benchmark model, the Kappa number de- 
creased ~om 29.7091 to 15.1897 as shown in Fig. 6. 

The procedure implemented at the frst phase was also repeated 
at another two phases, and the conslraints used at the second and 
third pha~es of  the convetrtional EVOP were also considered at these 
phases. The determined ranges of  the input factors at these phases 
are shown in Table 5. The parameter values of  the response surface 
model built at the third phase are shown in Fig. 7. In this model, 

,q-0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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Fig. 6. Decrease in the kappa munber at the best apeimmg con- 
dition of the In'st phase.  The kappa number rapidly de- 
creases during the 8 hours from the start, and then reaoh 
the n e w  steady state. 

July, 2~2  

only 19 important terms were used for the regression, and the 1~ 
and Q~ of this model were 0.9781 and 0.8322, respectively. Note 
that the coefficier~s of  the response surface model in the expm- 
merit region are different from those of the response stnface model 
constmcted at the frst phase because of  the conslraints and nonlin- 
earity. When the best point found in the region by applying the op- 
timization algorithm to the response stnface model was set as the 
operating condition of the pulp digester benclamark model, the Kap- 
panumber f'mally decreased to 3.0394 as shown in Fig. 8. 

Fig. 7. 
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Column plot  for the coefficients of the response s~rface 
m o ~ d  bum at the third phase. The cor vahtes are 
mean-cantared ~md scaled to unit  variance.  

7 F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

6 

i 
i [ 

31 "7 

i 

2 4 6 8 1 ~  1 2  J 4  16  

E|aps~d fin~e (hour) 

Fig. 8. Decrease tn the kappa number  at the best ogerattag condi- 
tion ~ t h e  third phase. The kappa munber remmtgably de- 
creases during the 8 houurs from the start, ~md then reach 
the n e w  steady state. 
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Table 8. Comparison between the conventional EVOP and the improved EVOP 

543 

No. of  exp. Preservation of Reliability Detection of 
(For one phase) original exp. region of results the optimum 

Improved EVOP 33 Yes High Clear 
Conventional EVOP 64 No Low Maybe ambiguous 

4. Comparison of the Conventional EVOP and the Improved 
EVOP 

We have applied both the conventional EVOP and the improved 
EVOP to tile pulp digester benctmlark model to find tile optimal 
operating condition on tile assumption that file charactelistics of 
the prmess were not known. We can summarize tile conlparison 
results as follows (Table 8). First. file number of expel-line, its for 
each phase was 64 for the conventional EVOP and 33 for the im- 
proved EVOR Second, when there were experimental consb-aints, 
file original experiment region was maintained for file improved 
EVOP while it shrank for the conventional EVOR If we compare 
Tables 3 and 5, we can see that file l-anges of Tc~, Fvpex and FeMc~ 
for the improved EVOP are larger than those for the conventional 
EVOR Tim-el, in tile case of tile improved EVOR we can have con- 
fidence in tile results of experiments and analyses by reFeating ex- 
periments at a specific position. Finally, the best operating condi- 
tions for each eXFel-im~lt region were obtained more clearly by viltue 
of  the response surface model adopted in tile improved EVOR 

Although a smaller Kappa number, 2.8448, was obtained for the 
conventional EVOP compared with 3.0394 for tile improved EVOP, 
the two values do not show significant differences. Moreover, it 
call be surely said ti~t tile improved EVOP is a much more eltici~it 
method than file conventional EVOP fi-cin tile viewpoint of the pre- 
vionsly mentioned advantages. 

CONCLUSIONS 

Ill this papel; an improved evolutionary operaticil (EVOP) based 
on D-optimal design and response surface method (RSM) was pro- 
posed. To test its perfonnance and superiority to a conventional 
EVOR we applied both file conventional EVOP and file improved 
EVOP to the pulp digester benchmark model. As a result, the im- 
proved EVOP showed conq3aI-able perfomlance with advantages 
on the number of experiments, preservation of original experiment 
region, reliability in file results of experimenLs and analyses, and 
cletemfinafion of file best operating condition for each experiment 
region. These benefits are generated by the properties of D-optimal 
design and RSM and make tile proposed method more applicable 
in practical problems than tile conventional EVOR 

Although we enhanced the performance of tile conventional 
EVOP by modifying its several properties, we have to keep in mind 
that the key point for the successful application of the proposed meth- 
od to tile real industry is file haimonious collaboration among all 
file participants. Ill a&lifion, file selection of file appropriate pro- 
cess, pre-experiment on the pilot plant and education for induslrial 
oFeratcrs should precede file real application of file methoc[ 
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N O M E N C L A T U R E  

b parameter vector of a quadratic response surface model, 

with the size of (1 +2n +n (%-  1) / by 1 

b,: the coefficient for the cross product tern1 of ith input fac- 
tor and jth input factor in the response surface model 

F~ec~, flowrate of the trim white liquor into the extended mod- 
ified continuous cooking zone [m3/nlin] 

FMc c flowrate of the b-ira white liquor into tile modified coi1- 
finuous cooking zone [m3/min] 

Fvps7 flowrate of tile reacted white liquor extracted froln file 
cook zone [m3/min] 

Kappa number : mass fi-action of tile lignin content in wood drips 
[-] 

m number of experiment data used in modeling 
MSE mean squared eYror [ S S E / ( m - l - n u m b e r  of telms 

nsed)] 
n number of  input factors 
PtLESS prediction sum of squares 
Q2 the degree to which the variation of a response variable 

is predicted by file response surface model [-] 
R 2 file degree to which tile variation of a response variable 

is explained by the response surface model [-] 
s : number of experiment data not used in modeling 
SSE eiTor sum of squares 
SST total sum of squares 
T c ~  tempera~a-e of the mLxture into file cook zone [K] 
TEMc, c tempemblre of the trim white liquor into the extended 

modified continuous cooking zone [K] 
TMcc temperature of the trim white liquor into tile modified 

continuous cooking zone [K] 

X design matis with the size of (1 +2n +n(I2-1)  ) by 
m 

containing tile infonnation of file experiment posi- 
tions 

xz. : kth experiment position of lth input factor 
y : vector of  a response variable with the size of m by 1 
y, : ith real response value used in modeling 
yj : j th real response value not used in modeling 

: overall mean of the response values 
i?,. : ith response value fitted by the response surface model 
~. :jth response value Ixedicted by tile response surface 

model 

Greek Letter 
~2 : variance of model error 

Subscripts 
Cook : cook zone 
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DIL 
EMCC 
i 
j 
k 
l 

: dilution water 
: extended modified continuous cooking zone 
: index of  response values used in modeling 
: index of  response values not used in modeling 
: index of  experiment positions 
: index of  input factors 

LOWEX : lower extract front the modified continuous cooking 
zone 

MCC : modified continuous cooking zone 
UPEX : upper extract from the cook zone 
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